The Epidemiology and Clinical Implications of Genetic Variation in Prostate Cancer




There is strong evidence of a genetic predisposition to prostate cancer. Recent advances in genetic sequencing technologies have permitted significant advances in the field. This article reviews the genetic basis underlying prostate cancer, and highlights the epidemiology and potential clinical usefulness of both rare and common genetic variations. In addition, recent findings related to the understanding of prostate cancer genetics are discussed.





  • The mechanisms by which genetic variations influence the risk and progression of prostate cancer and their clinical application are under investigation; however, these variants hold potential to improve and personalize current screening and treatment algorithms.





  • The mechanisms by which genetic variations influence the risk and progression of prostate cancer and their clinical application are under investigation; however, these variants hold potential to improve and personalize current screening and treatment algorithms.




















  • References



    1. 1. Ferlay J., Shin H.R., Bray F., et al: Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer 2010; 127: pp. 2893-2917

    2. 2. Shin H.R., Masuyer E., Ferlay J., et al: Cancer in Asia—incidence rates based on data in cancer incidence in five continents IX (1998-2002). Asian Pac J Cancer Prev 2010; 11: pp. 11-16

    3. 3. Jemal A., Bray F., Center M.M., et al: Global cancer statistics. CA Cancer J Clin 2011; 61: pp. 69-90

    4. 4. Bartsch G., Horninger W., Klocker H., et al: Tyrol prostate cancer demonstration project: early detection, treatment, outcome, incidence and mortality. BJU Int 2008; 101: pp. 809-816

    5. 5. Desireddi N.V., Roehl K.A., Loeb S., et al: Improved stage and grade-specific progression-free survival rates after radical prostatectomy in the PSA era. Urology 2007; 70: pp. 950-955

    6. 6. Amling C.L.: Prostate-specific antigen and detection of prostate cancer: What have we learned and what should we recommend for screening? Curr Treat Options Oncol 2006; 7: pp. 337-345

    7. 7. Trinchieri A., and Moretti R.: Trends in prostate cancer epidemiology in the year 2000. Arch Ital Urol Androl 2005; 77: pp. 164-166

    8. 8. Loeb S., and Catalona W.J.: Prostate-specific antigen screening: pro. Curr Opin Urol 2010; 20: pp. 185-188

    9. 9. Sanda M.G., Dunn R.L., Michalski J., et al: Quality of life and satisfaction with outcome among prostate-cancer survivors. N Engl J Med 2008; 358: pp. 1250-1261

    10. 10. Wilt T.J., Brawer M.K., Jones K.M., et al: Radical prostatectomy versus observation for localized prostate cancer. N Engl J Med 2012; 367: pp. 203-213

    11. 11. Ficarra V., Novara G., Rosen R.C., et al: Systematic review and meta-analysis of studies reporting urinary continence recovery after robot-assisted radical prostatectomy. Eur Urol 2012; 62: pp. 405-417

    12. 12. Carter B.S., Beaty T.H., Steinberg G.D., et al: Mendelian inheritance of familial prostate cancer. Proc Natl Acad Sci U S A 1992; 89: pp. 3367-3371

    13. 13. Eeles R.A.: Genetic predisposition to prostate cancer. Prostate Cancer Prostatic Dis 1999; 2: pp. 9-15

    14. 14. Edwards S.M., and Eeles R.A.: Unravelling the genetics of prostate cancer. Am J Med Genet C Semin Med Genet 2004; 129C: pp. 65-73

    15. 15. Lichtenstein P., Holm N.V., Verkasalo P.K., et al: Environmental and heritable factors in the causation of cancer—analyses of cohorts of twins from Sweden, Denmark, and Finland. N Engl J Med 2000; 343: pp. 78-85

    16. 16. Gronberg H., Wiklund F., and Damber J.E.: Age specific risks of familial prostate carcinoma: a basis for screening recommendations in high risk populations. Cancer 1999; 86: pp. 477-483

    17. 17. Zeegers M.P., Jellema A., and Ostrer H.: Empiric risk of prostate carcinoma for relatives of patients with prostate carcinoma: a meta-analysis. Cancer 2003; 97: pp. 1894-1903

    18. 18. Bratt O.: Hereditary prostate cancer: clinical aspects. J Urol 2002; 168: pp. 906-913

    19. 19. Zuhlke K.A., Johnson A.M., Okoth L.A., et al: Identification of a novel NBN truncating mutation in a family with hereditary prostate cancer. Fam Cancer 2012; 11: pp. 595-600

    20. 20. Isaacs W.B.: Inherited susceptibility for aggressive prostate cancer. Asian J Androl 2012; 14: pp. 415-418

    21. 21. Catalona W.J., Bailey-Wilson J.E., Camp N.J., et al: National Cancer Institute prostate cancer genetics workshop. Cancer Res 2011; 71: pp. 3442-3446

    22. 22. Choudhury A.D., Eeles R., Freedland S.J., et al: The role of genetic markers in the management of prostate cancer. Eur Urol 2012; 62: pp. 577-587

    23. 23. Schaid D.J.: The complex genetic epidemiology of prostate cancer. Hum Mol Genet 2004; 13: pp. R103-R121

    24. 24. Xu J., Dimitrov L., Chang B.L., et al: A combined genomewide linkage scan of 1,233 families for prostate cancer-susceptibility genes conducted by the international consortium for prostate cancer genetics. Am J Hum Genet 2005; 77: pp. 219-229

    25. 25. The Breast Cancer Linkage Consortium : Cancer risks in BRCA2 mutation carriers. J Natl Cancer Inst 1999; 91: pp. 1310-1316

    26. 26. Castro E., and Eeles R.: The role of BRCA1 and BRCA2 in prostate cancer. Asian J Androl 2012; 14: pp. 409-414

    27. 27. Bancroft E.K., Page E.C., Castro E., et al: Targeted Prostate Cancer Screening in BRCA1 and BRCA2 Mutation Carriers: Results from the Initial Screening Round of the IMPACT Study. Eur Urol 2014; undefined:

    28. 28. Sundararajan S., Ahmed A., and Goodman O.B.: The relevance of BRCA genetics to prostate cancer pathogenesis and treatment. Clin Adv Hematol Oncol 2011; 9: pp. 748-755

    29. 29. Gudmundsdottir K., and Ashworth A.: The roles of BRCA1 and BRCA2 and associated proteins in the maintenance of genomic stability. Oncogene 2006; 25: pp. 5864-5874

    30. 30. Boulton S.J.: Cellular functions of the BRCA tumour-suppressor proteins. Biochem Soc Trans 2006; 34: pp. 633-645

    31. 31. Turner N., Tutt A., and Ashworth A.: Hallmarks of ‘BRCAness’ in sporadic cancers. Nat Rev Cancer 2004; 4: pp. 814-819

    32. 32. Agalliu I., Karlins E., Kwon E.M., et al: Rare germline mutations in the BRCA2 gene are associated with early-onset prostate cancer. Br J Cancer 2007; 97: pp. 826-831

    33. 33. Kote-Jarai Z., Leongamornlert D., Saunders E., et al: BRCA2 is a moderate penetrance gene contributing to young-onset prostate cancer: implications for genetic testing in prostate cancer patients. Br J Cancer 2011; 105: pp. 1230-1234

    34. 34. Whittemore A.S., Gong G., and Itnyre J.: Prevalence and contribution of BRCA1 mutations in breast cancer and ovarian cancer: results from three U.S. population-based case-control studies of ovarian cancer. Am J Hum Genet 1997; 60: pp. 496-504

    35. 35. Risch H.A., McLaughlin J.R., Cole D.E., et al: Population BRCA1 and BRCA2 mutation frequencies and cancer penetrances: a kin-cohort study in Ontario, Canada. J Natl Cancer Inst 2006; 98: pp. 1694-1706

    36. 36. Roa B.B., Boyd A.A., Volcik K., et al: Ashkenazi Jewish population frequencies for common mutations in BRCA1 and BRCA2. Nat Genet 1996; 14: pp. 185-187

    37. 37. Oddoux C., Struewing J.P., Clayton C.M., et al: The carrier frequency of the BRCA2 6174delT mutation among Ashkenazi Jewish individuals is approximately 1%. Nat Genet 1996; 14: pp. 188-190

    38. 38. Vazina A., Baniel J., Yaacobi Y., et al: The rate of the founder Jewish mutations in BRCA1 and BRCA2 in prostate cancer patients in Israel. Br J Cancer 2000; 83: pp. 463-466

    39. 39. Struewing J.P., Hartge P., Wacholder S., et al: The risk of cancer associated with specific mutations of BRCA1 and BRCA2 among Ashkenazi Jews. N Engl J Med 1997; 336: pp. 1401-1408

    40. 40. Tryggvadottir L., Vidarsdottir L., Thorgeirsson T., et al: Prostate cancer progression and survival in BRCA2 mutation carriers. J Natl Cancer Inst 2007; 99: pp. 929-935

    41. 41. Thorne H., Willems A.J., Niedermayr E., et al: Decreased prostate cancer-specific survival of men with BRCA2 mutations from multiple breast cancer families. Cancer Prev Res (Phila) 2011; 4: pp. 1002-1010

    42. 42. Edwards S.M., Evans D.G., Hope Q., et al: Prostate cancer in BRCA2 germline mutation carriers is associated with poorer prognosis. Br J Cancer 2010; 103: pp. 918-924

    43. 43. Narod S.A., Neuhausen S., Vichodez G., et al: Rapid progression of prostate cancer in men with a BRCA2 mutation. Br J Cancer 2008; 99: pp. 371-374

    44. 44. Gallagher D.J., Gaudet M.M., Pal P., et al: Germline BRCA mutations denote a clinicopathologic subset of prostate cancer. Clin Cancer Res 2010; 16: pp. 2115-2121

    45. 45. Yang D., Khan S., Sun Y., et al: Association of BRCA1 and BRCA2 mutations with survival, chemotherapy sensitivity, and gene mutator phenotype in patients with ovarian cancer. JAMA 2011; 306: pp. 1557-1565

    46. 46. Fong P.C., Boss D.S., Yap T.A., et al: Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. N Engl J Med 2009; 361: pp. 123-134

    47. 47. Fong P.C., Yap T.A., Boss D.S., et al: Poly(ADP)-ribose polymerase inhibition: frequent durable responses in BRCA carrier ovarian cancer correlating with platinum-free interval. J Clin Oncol 2010; 28: pp. 2512-2519

    48. 48. Gallagher D.J., Cronin A.M., Milowsky M.I., et al: Germline BRCA mutation does not prevent response to taxane-based therapy for the treatment of castration-resistant prostate cancer. BJU Int 2012; 109: pp. 713-719

    49. 49. Stoffel E., Mukherjee B., Raymond V.M., et al: Calculation of risk of colorectal and endometrial cancer among patients with Lynch syndrome. Gastroenterology 2009; 137: pp. 1621-1627

    50. 50. Aarnio M., Mecklin J.P., Aaltonen L.A., et al: Life-time risk of different cancers in hereditary non-polyposis colorectal cancer (HNPCC) syndrome. Int J Cancer 1995; 64: pp. 430-433

    51. 51. Raymond V.M., Mukherjee B., Wang F., et al: Elevated risk of prostate cancer among men with lynch syndrome. J Clin Oncol 2013; 31: pp. 1713-1718

    52. 52. Bauer C.M., Ray A.M., Halstead-Nussloch B.A., et al: Hereditary prostate cancer as a feature of Lynch syndrome. Fam Cancer 2011; 10: pp. 37-42

    53. 53. da Silva F.C., de Oliveira L.P., Santos E.M., et al: Frequency of extracolonic tumors in Brazilian families with Lynch syndrome: analysis of a hereditary colorectal cancer institutional registry. Fam Cancer 2010; 9: pp. 563-570

    54. 54. Goecke T., Schulmann K., Engel C., et al: Genotype-phenotype comparison of German MLH1 and MSH2 mutation carriers clinically affected with Lynch syndrome: a report by the German HNPCC Consortium. J Clin Oncol 2006; 24: pp. 4285-4292

    55. 55. Scott R.J., McPhillips M., Meldrum C.J., et al: Hereditary nonpolyposis colorectal cancer in 95 families: differences and similarities between mutation-positive and mutation-negative kindreds. Am J Hum Genet 2001; 68: pp. 118-127

    56. 56. Kruglyak L., and Nickerson D.A.: Variation is the spice of life. Nat Genet 2001; 27: pp. 234-236

    57. 57. Marian A.J.: Molecular genetic studies of complex phenotypes. Transl Res 2012; 159: pp. 64-79

    58. 58. Verma R.S., Manikal M., Conte R.A., et al: Chromosomal basis of adenocarcinoma of the prostate. Cancer Invest 1999; 17: pp. 441-447

    59. 59. Bova G.S., and Isaacs W.B.: Review of allelic loss and gain in prostate cancer. World J Urol 1996; 14: pp. 338-346

    60. 60. Freedman M.L., Haiman C.A., Patterson N., et al: Admixture mapping identifies 8q24 as a prostate cancer risk locus in African-American men. Proc Natl Acad Sci U S A 2006; 103: pp. 14068-14073

    61. 61. Amundadottir L.T., Sulem P., Gudmundsson J., et al: A common variant associated with prostate cancer in European and African populations. Nat Genet 2006; 38: pp. 652-658

    62. 62. Al Olama A.A., Kote-Jarai Z., Giles G.G., et al: Multiple loci on 8q24 associated with prostate cancer susceptibility. Nat Genet 2009; 41: pp. 1058-1060

    63. 63. Gudmundsson J., Sulem P., Gudbjartsson D.F., et al: A study based on whole-genome sequencing yields a rare variant at 8q24 associated with prostate cancer. Nat Genet 2012; 44: pp. 1326-1329

    64. 64. Robbins C., Torres J.B., Hooker S., et al: Confirmation study of prostate cancer risk variants at 8q24 in African Americans identifies a novel risk locus. Genome Res 2007; 17: pp. 1717-1722

    65. 65. Ellwood-Yen K., Graeber T.G., Wongvipat J., et al: Myc-driven murine prostate cancer shares molecular features with human prostate tumors. Cancer Cell 2003; 4: pp. 223-238

    66. 66. Yeager M., Orr N., Hayes R.B., et al: Genome-wide association study of prostate cancer identifies a second risk locus at 8q24. Nat Genet 2007; 39: pp. 645-649

    67. 67. Jia L., Landan G., Pomerantz M., et al: Functional enhancers at the gene-poor 8q24 cancer-linked locus. PLoS Genet 2009; 5: pp. e1000597

    68. 68. Ahmadiyeh N., Pomerantz M.M., Grisanzio C., et al: 8q24 prostate, breast, and colon cancer risk loci show tissue-specific long-range interaction with MYC. Proc Natl Acad Sci U S A 2010; 107: pp. 9742-9746

    69. 69. Pomerantz M.M., Beckwith C.A., Regan M.M., et al: Evaluation of the 8q24 prostate cancer risk locus and MYC expression. Cancer Res 2009; 69: pp. 5568-5574

    70. 70. Tuupanen S., Turunen M., Lehtonen R., et al: The common colorectal cancer predisposition SNP rs6983267 at chromosome 8q24 confers potential to enhanced Wnt signaling. Nat Genet 2009; 41: pp. 885-890

    71. 71. Meyer K.B., Maia A.T., O’Reilly M., et al: A functional variant at a prostate cancer predisposition locus at 8q24 is associated with PVT1 expression. PLoS Genet 2011; 7: pp. e1002165

    72. 72. Eeles R.A., Olama A.A., Benlloch S., et al: Identification of 23 new prostate cancer susceptibility loci using the iCOGS custom genotyping array. Nat Genet 2013; 45: pp. 385-391

    73. 73. Kote-Jarai Z., Saunders E.J., Leongamornlert D.A., et al: Fine-mapping identifies multiple prostate cancer risk loci at 5p15, one of which associates with TERT expression. Hum Mol Genet 2013; 22: pp. 2520-2528

    74. 74. Foulkes W.D.: Inherited susceptibility to common cancers. N Engl J Med 2008; 359: pp. 2143-2153

    75. 75. Kader A.K., Sun J., Isaacs S.D., et al: Individual and cumulative effect of prostate cancer risk-associated variants on clinicopathologic variables in 5,895 prostate cancer patients. Prostate 2009; 69: pp. 1195-1205

    76. 76. Wiklund F.E., Adami H.O., Zheng S.L., et al: Established prostate cancer susceptibility variants are not associated with disease outcome. Cancer Epidemiol Biomarkers Prev 2009; 18: pp. 1659-1662

    77. 77. Sun J., Chang B.L., Isaacs S.D., et al: Cumulative effect of five genetic variants on prostate cancer risk in multiple study populations. Prostate 2008; 68: pp. 1257-1262

    78. 78. Zheng S.L., Sun J., Wiklund F., et al: Cumulative association of five genetic variants with prostate cancer. N Engl J Med 2008; 358: pp. 910-919

    79. 79. Lange E.M., Gillanders E.M., Davis C.C., et al: Genome-wide scan for prostate cancer susceptibility genes using families from the University of Michigan prostate cancer genetics project finds evidence for linkage on chromosome 17 near BRCA1. Prostate 2003; 57: pp. 326-334

    80. 80. Gillanders E.M., Xu J., Chang B.L., et al: Combined genome-wide scan for prostate cancer susceptibility genes. J Natl Cancer Inst 2004; 96: pp. 1240-1247

    81. 81. Ewing C.M., Ray A.M., Lange E.M., et al: Germline mutations in HOXB13 and prostate-cancer risk. N Engl J Med 2012; 366: pp. 141-149

    82. 82. Breyer J.P., Avritt T.G., McReynolds K.M., et al: Confirmation of the HOXB13 G84E germline mutation in familial prostate cancer. Cancer Epidemiol Biomarkers Prev 2012; 21: pp. 1348-1353

    83. 83. Akbari M.R., Trachtenberg J., Lee J., et al: Association between germline HOXB13 G84E mutation and risk of prostate cancer. J Natl Cancer Inst 2012; 104: pp. 1260-1262

    84. 84. Karlsson R., Aly M., Clements M., et al: A population-based assessment of germline HOXB13 G84E mutation and prostate cancer risk. Eur Urol 2014; 65: pp. 169-176

    85. 85. Lin X., Qu L., Chen Z., et al: A novel germline mutation in HOXB13 is associated with prostate cancer risk in Chinese men. Prostate 2013; 73: pp. 169-175

    86. 86. Laitinen V.H., Wahlfors T., Saaristo L., et al: HOXB13 G84E mutation in Finland: population-based analysis of prostate, breast, and colorectal cancer risk. Cancer Epidemiol Biomarkers Prev 2013; 22: pp. 452-460

    87. 87. Xu J., Sun J., Kader A.K., et al: Estimation of absolute risk for prostate cancer using genetic markers and family history. Prostate 2009; 69: pp. 1565-1572

    88. 88. Helfand B.T., Kan D., Modi P., et al: Prostate cancer risk alleles significantly improve disease detection and are associated with aggressive features in patients with a “normal” prostate specific antigen and digital rectal examination. Prostate 2011; 71: pp. 394-402

    89. 89. Wang M., Liu F., Hsing A.W., et al: Replication and cumulative effects of GWAS-identified genetic variations for prostate cancer in Asians: a case-control study in the ChinaPCa consortium. Carcinogenesis 2012; 33: pp. 356-360

    90. 90. Chen M., Huang Y.C., Yang S., et al: Common variants at 8q24 are associated with prostate cancer risk in Taiwanese men. Prostate 2010; 70: pp. 502-507

    91. 91. Helfand B.T., Loeb S., Kan D., et al: Number of prostate cancer risk alleles may identify possibly ‘insignificant’ disease. BJU Int 2010; 106: pp. 1602-1606

    92. 92. Spitz M.R., Etzel C.J., Dong Q., et al: An expanded risk prediction model for lung cancer. Cancer Prev Res (Phila) 2008; 1: pp. 250-254

    93. 93. Barlow W.E., White E., Ballard-Barbash R., et al: Prospective breast cancer risk prediction model for women undergoing screening mammography. J Natl Cancer Inst 2006; 98: pp. 1204-1214

    94. 94. Gudmundsson J., Besenbacher S., Sulem P., et al: Genetic correction of PSA values using sequence variants associated with PSA levels. Sci Transl Med 2010; 2: pp. 62ra92

    95. 95. Aly M., Wiklund F., Xu J., et al: Polygenic risk score improves prostate cancer risk prediction: results from the Stockholm-1 cohort study. Eur Urol 2011; 60: pp. 21-28

    96. 96. Odedina F.T., Akinremi T.O., Chinegwundoh F., et al: Prostate cancer disparities in Black men of African descent: a comparative literature review of prostate cancer burden among Black men in the United States, Caribbean, United Kingdom, and West Africa. Infect Agent Cancer 2009; 4: pp. S2

    97. 97. Williams H., and Powell I.J.: Epidemiology, pathology, and genetics of prostate cancer among African Americans compared with other ethnicities. Methods Mol Biol 2009; 472: pp. 439-453

    98. 98. Powell I.J., Banerjee M., Bianco F.J., et al: The effect of race/ethnicity on prostate cancer treatment outcome is conditional: a review of Wayne State University data. J Urol 2004; 171: pp. 1508-1512

    99. 99. Ishak M.B., and Giri V.N.: A systematic review of replication studies of prostate cancer susceptibility genetic variants in high-risk men originally identified from genome-wide association studies. Cancer Epidemiol Biomarkers Prev 2011; 20: pp. 1599-1610

    100. 100. Okobia M.N., Zmuda J.M., Ferrell R.E., et al: Chromosome 8q24 variants are associated with prostate cancer risk in a high risk population of African ancestry. Prostate 2011; 71: pp. 1054-1063

    101. 101. Bensen J.T., Xu Z., Smith G.J., et al: Genetic polymorphism and prostate cancer aggressiveness: a case-only study of 1,536 GWAS and candidate SNPs in African-Americans and European-Americans. Prostate 2013; 73: pp. 11-22

    102. 102. Haiman C.A., Chen G.K., Blot W.J., et al: Characterizing genetic risk at known prostate cancer susceptibility loci in African Americans. PLoS Genet 2011; 7: pp. e1001387

    103. 103. Haiman C.A., Chen G.K., Blot W.J., et al: Genome-wide association study of prostate cancer in men of African ancestry identifies a susceptibility locus at 17q21. Nat Genet 2011; 43: pp. 570-573

    104. 104. Xu Z., Bensen J.T., Smith G.J., et al: GWAS SNP Replication among African American and European American men in the North Carolina-Louisiana prostate cancer project (PCaP). Prostate 2011; 71: pp. 881-891

    105. 105. Whitman E.J., Pomerantz M., Chen Y., et al: Prostate cancer risk allele specific for African descent associates with pathologic stage at prostatectomy. Cancer Epidemiol Biomarkers Prev 2010; 19: pp. 1-8

    106. 106. Hooker S., Hernandez W., Chen H., et al: Replication of prostate cancer risk loci on 8q24, 11q13, 17q12, 19q33, and Xp11 in African Americans. Prostate 2010; 70: pp. 270-275

    107. 107. Xu J., Kibel A.S., Hu J.J., et al: Prostate cancer risk associated loci in African Americans. Cancer Epidemiol Biomarkers Prev 2009; 18: pp. 2145-2149

    108. 108. Chang B.L., Spangler E., Gallagher S., et al: Validation of genome-wide prostate cancer associations in men of African descent. Cancer Epidemiol Biomarkers Prev 2011; 20: pp. 23-32

    109. 109. Zeigler-Johnson C.M., Rennert H., Mittal R.D., et al: Evaluation of prostate cancer characteristics in four populations worldwide. Can J Urol 2008; 15: pp. 4056-4064

    110. 110. Djavan B., Eckersberger E., Finkelstein J., et al: Prostate-specific antigen testing and prostate cancer screening. Prim Care 2010; 37: pp. 441-459

    111. 111. Helfand B.T., Loeb S., Hu Q., et al: Personalized prostate specific antigen testing using genetic variants may reduce unnecessary prostate biopsies. J Urol 2013; 189: pp. 1697-1701

    112. 112. Bansal A., Murray D.K., Wu J.T., et al: Heritability of prostate-specific antigen and relationship with zonal prostate volumes in aging twins. J Clin Endocrinol Metab 2000; 85: pp. 1272-1276

    113. 113. Pilia G., Chen W.M., Scuteri A., et al: Heritability of cardiovascular and personality traits in 6,148 Sardinians. PLoS Genet 2006; 2: pp. e132

    114. 114. Loeb S.: Germline sequence variants and prostate-specific antigen interpretation. Clin Chem 2011; 57: pp. 662-663

    115. 115. Loeb S., Carter H.B., Walsh P.C., et al: Single nucleotide polymorphisms and the likelihood of prostate cancer at a given prostate specific antigen level. J Urol 2009; 182: pp. 101-104

    116. 116. Guy M., Kote-Jarai Z., Giles G.G., et al: Identification of new genetic risk factors for prostate cancer. Asian J Androl 2009; 11: pp. 49-55

    117. 117. Nam R.K., Zhang W.W., Klotz L.H., et al: Variants of the hK2 protein gene (KLK2) are associated with serum hK2 levels and predict the presence of prostate cancer at biopsy. Clin Cancer Res 2006; 12: pp. 6452-6458

    118. 118. Lose F., Batra J., O’Mara T., et al: Common variation in Kallikrein genes KLK5, KLK6, KLK12, and KLK13 and risk of prostate cancer and tumor aggressiveness. Urol Oncol 2011; 31: pp. 635-643

    119. 119. Pomerantz M.M., Werner L., Xie W., et al: Association of prostate cancer risk Loci with disease aggressiveness and prostate cancer-specific mortality. Cancer Prev Res (Phila) 2011; 4: pp. 719-728

    120. 120. Kohli M., Rothberg P.G., Feng C., et al: Exploratory study of a KLK2 polymorphism as a prognostic marker in prostate cancer. Cancer Biomark 2010; 7: pp. 101-108

    121. 121. Cheng I., Plummer S.J., Neslund-Dudas C., et al: Prostate cancer susceptibility variants confer increased risk of disease progression. Cancer Epidemiol Biomarkers Prev 2010; 19: pp. 2124-2132

    122. 122. Cramer S.D., Sun J., Zheng S.L., et al: Association of prostate-specific antigen promoter genotype with clinical and histopathologic features of prostate cancer. Cancer Epidemiol Biomarkers Prev 2008; 17: pp. 2451-2457

    123. 123. Pal P., Xi H., Sun G., et al: Tagging SNPs in the kallikrein genes 3 and 2 on 19q13 and their associations with prostate cancer in men of European origin. Hum Genet 2007; 122: pp. 251-259

    124. 124. Lu X., Zhao W., Huang J., et al: Common variation in KLKB1 and essential hypertension risk: tagging-SNP haplotype analysis in a case-control study. Hum Genet 2007; 121: pp. 327-335

    125. 125. Cramer S.D., Chang B.L., Rao A., et al: Association between genetic polymorphisms in the prostate-specific antigen gene promoter and serum prostate-specific antigen levels. J Natl Cancer Inst 2003; 95: pp. 1044-1053

    126. 126. Parikh H., Wang Z., Pettigrew K.A., et al: Fine mapping the KLK3 locus on chromosome 19q13.33 associated with prostate cancer susceptibility and PSA levels. Hum Genet 2011; 129: pp. 675-685

    127. 127. Vickers A., Cronin A., Roobol M., et al: Reducing unnecessary biopsy during prostate cancer screening using a four-kallikrein panel: an independent replication. J Clin Oncol 2010; 28: pp. 2493-2498

    128. 128. Vickers A.J., Cronin A.M., Roobol M.J., et al: A four-kallikrein panel predicts prostate cancer in men with recent screening: data from the European Randomized Study of Screening for Prostate Cancer, Rotterdam. Clin Cancer Res 2010; 16: pp. 3232-3239

    129. 129. Donin N, Loeb S, Cooper PR, et al. Genetically adjusted prostate-specific antigen values may prevent delayed biopsies in African-American men. BJU Int, in press.

    130. 130. Scardino P.T.: Prostate cancer: improving PSA testing by adjusting for genetic background. Nat Rev Urol 2013; 10: pp. 190-192

    131. 131. Kwon E.M., Salinas C.A., Kolb S., et al: Genetic polymorphisms in inflammation pathway genes and prostate cancer risk. Cancer Epidemiol Biomarkers Prev 2011; 20: pp. 923-933

    132. 132. Camp N.J., Farnham J.M., Wong J., et al: Replication of the 10q11 and Xp11 prostate cancer risk variants: results from a Utah pedigree-based study. Cancer Epidemiol Biomarkers Prev 2009; 18: pp. 1290-1294

    133. 133. Lu L., Cancel-Tassin G., Valeri A., et al: Chromosomes 4 and 8 implicated in a genome wide SNP linkage scan of 762 prostate cancer families collected by the ICPCG. Prostate 2012; 72: pp. 410-426

    134. 134. Amin Al Olama A., Kote-Jarai Z., Schumacher F.R., et al: A meta-analysis of genome-wide association studies to identify prostate cancer susceptibility loci associated with aggressive and non-aggressive disease. Hum Mol Genet 2013; 22: pp. 408-415

    135. 135. Penney K.L., Pyne S., Schumacher F.R., et al: Genome-wide association study of prostate cancer mortality. Cancer Epidemiol Biomarkers Prev 2010; 19: pp. 2869-2876

    136. 136. Pal P., Xi H., Guha S., et al: Common variants in 8q24 are associated with risk for prostate cancer and tumor aggressiveness in men of European ancestry. Prostate 2009; 69: pp. 1548-1556

    137. 137. Gudmundsson J., Sulem P., Rafnar T., et al: Common sequence variants on 2p15 and Xp11.22 confer susceptibility to prostate cancer. Nat Genet 2008; 40: pp. 281-283

    138. 138. Duggan D., Zheng S.L., Knowlton M., et al: Two genome-wide association studies of aggressive prostate cancer implicate putative prostate tumor suppressor gene DAB2IP. J Natl Cancer Inst 2007; 99: pp. 1836-1844

    139. 139. FitzGerald L.M., Kwon E.M., Conomos M.P., et al: Genome-wide association study identifies a genetic variant associated with risk for more aggressive prostate cancer. Cancer Epidemiol Biomarkers Prev 2011; 20: pp. 1196-1203

    140. 140. Xu J., Zheng S.L., Isaacs S.D., et al: Inherited genetic variant predisposes to aggressive but not indolent prostate cancer. Proc Natl Acad Sci U S A 2010; 107: pp. 2136-2140

    141. 141. Ahn J., Kibel A.S., Park J.Y., et al: Prostate cancer predisposition loci and risk of metastatic disease and prostate cancer recurrence. Clin Cancer Res 2011; 17: pp. 1075-1081

    142. 142. Xu J., Isaacs S.D., Sun J., et al: Association of prostate cancer risk variants with clinicopathologic characteristics of the disease. Clin Cancer Res 2008; 14: pp. 5819-5824

    143. 143. Severi G., Hayes V.M., Padilla E.J., et al: The common variant rs1447295 on chromosome 8q24 and prostate cancer risk: results from an Australian population-based case-control study. Cancer Epidemiol Biomarkers Prev 2007; 16: pp. 610-612

    144. 144. Sun J., Zheng S.L., Wiklund F., et al: Sequence variants at 22q13 are associated with prostate cancer risk. Cancer Res 2009; 69: pp. 10-15

    145. 145. Sun J., Purcell L., Gao Z., et al: Association between sequence variants at 17q12 and 17q24.3 and prostate cancer risk in European and African Americans. Prostate 2008; 68: pp. 691-697

    146. 146. Ostrander E.A., Kwon E.M., and Stanford J.L.: Genetic susceptibility to aggressive prostate cancer. Cancer Epidemiol Biomarkers Prev 2006; 15: pp. 1761-1764

    147. 147. Lin D.W., FitzGerald L.M., Fu R., et al: Genetic variants in the LEPR, CRY1, RNASEL, IL4, and ARVCF genes are prognostic markers of prostate cancer-specific mortality. Cancer Epidemiol Biomarkers Prev 2011; 20: pp. 1928-1936

    148. 148. Bailey-Wilson J.E., Childs E.J., Cropp C.D., et al: Analysis of Xq27-28 linkage in the International Consortium for Prostate Cancer Genetics (ICPCG) families. BMC Med Genet 2012; 13: pp. 46

    149. 149. Kote-Jarai Z., Amin Al Olama A., Leongamornlert D., et al: Identification of a novel prostate cancer susceptibility variant in the KLK3 gene transcript. Hum Genet 2011; 129: pp. 687-694

    150. 150. Reinhardt D., Helfand B.T., Cooper P.R., et al: Prostate cancer risk alleles are associated with prostate cancer tumor volume and prostate size. J Urol 2013; undefined:

    151. 151. Witte J.S., Goddard K.A., Conti D.V., et al: Genomewide scan for prostate cancer-aggressiveness loci. Am J Hum Genet 2000; 67: pp. 92-99

    152. 152. Goddard K.A., Witte J.S., Suarez B.K., et al: Model-free linkage analysis with covariates confirms linkage of prostate cancer to chromosomes 1 and 4. Am J Hum Genet 2001; 68: pp. 1197-1206

    153. 153. Neville P.J., Conti D.V., Paris P.L., et al: Prostate cancer aggressiveness locus on chromosome 7q32-q33 identified by linkage and allelic imbalance studies. Neoplasia 2002; 4: pp. 424-431

    154. 154. Liu X., Cheng I., Plummer S.J., et al: Fine-mapping of prostate cancer aggressiveness loci on chromosome 7q22-35. Prostate 2011; 71: pp. 682-689

    155. 155. Johanneson B., McDonnell S.K., Karyadi D.M., et al: Family-based association analysis of 42 hereditary prostate cancer families identifies the Apolipoprotein L3 region on chromosome 22q12 as a risk locus. Hum Mol Genet 2010; 19: pp. 3852-3862

    156. 156. Camp N.J., Farnham J.M., and Cannon Albright L.A.: Genomic search for prostate cancer predisposition loci in Utah pedigrees. Prostate 2005; 65: pp. 365-374

    157. 157. Schaid D.J., McDonnell S.K., Zarfas K.E., et al: Pooled genome linkage scan of aggressive prostate cancer: results from the International Consortium for Prostate Cancer Genetics. Hum Genet 2006; 120: pp. 471-485

    158. 158. Cicek M.S., Conti D.V., Curran A., et al: Association of prostate cancer risk and aggressiveness to androgen pathway genes: SRD5A2, CYP17, and the AR. Prostate 2004; 59: pp. 69-76

    159. 159. Hayes V.M., Severi G., Southey M.C., et al: Macrophage inhibitory cytokine-1 H6D polymorphism, prostate cancer risk, and survival. Cancer Epidemiol Biomarkers Prev 2006; 15: pp. 1223-1225

    160. 160. Huang S.P., Huang C.Y., Wu W.J., et al: Association of vitamin D receptor FokI polymorphism with prostate cancer risk, clinicopathological features and recurrence of prostate specific antigen after radical prostatectomy. Int J Cancer 2006; 119: pp. 1902-1907

    161. 161. Wright J.L., Neuhouser M.L., Lin D.W., et al: AMACR polymorphisms, dietary intake of red meat and dairy and prostate cancer risk. Prostate 2011; 71: pp. 498-506

    162. 162. Langeberg W.J., Tahir S.A., Feng Z., et al: Association of caveolin-1 and -2 genetic variants and post-treatment serum caveolin-1 with prostate cancer risk and outcomes. Prostate 2010; 70: pp. 1020-1035

    163. 163. Lubahn J., Berndt S.I., Jin C.H., et al: Association of CASP8 D302H polymorphism with reduced risk of aggressive prostate carcinoma. Prostate 2010; 70: pp. 646-653

    164. 164. Fradet V., Cheng I., Casey G., et al: Dietary omega-3 fatty acids, cyclooxygenase-2 genetic variation, and aggressive prostate cancer risk. Clin Cancer Res 2009; 15: pp. 2559-2566

    165. 165. Mikhak B., Hunter D.J., Spiegelman D., et al: Manganese superoxide dismutase (MnSOD) gene polymorphism, interactions with carotenoid levels and prostate cancer risk. Carcinogenesis 2008; 29: pp. 2335-2340

    166. 166. Stevens V.L., Rodriguez C., Talbot J.T., et al: Paraoxonase 1 (PON1) polymorphisms and prostate cancer in the CPS-II Nutrition Cohort. Prostate 2008; 68: pp. 1336-1340

    167. 167. Neslund-Dudas C., Bock C.H., Monaghan K., et al: SRD5A2 and HSD3B2 polymorphisms are associated with prostate cancer risk and aggressiveness. Prostate 2007; 67: pp. 1654-1663

    168. 168. Casey G., Neville P.J., Liu X., et al: Podocalyxin variants and risk of prostate cancer and tumor aggressiveness. Hum Mol Genet 2006; 15: pp. 735-741

    169. 169. Vickers A.J., Gupta A., Savage C.J., et al: A panel of kallikrein marker predicts prostate cancer in a large, population-based cohort followed for 15 years without screening. Cancer Epidemiol Biomarkers Prev 2011; 20: pp. 255-261

    170. 170. Batra J., O’Mara T., Patnala R., et al: Genetic polymorphisms in the human tissue kallikrein (KLK) locus and their implication in various malignant and non-malignant diseases. Biol Chem 2012; 393: pp. 1365-1390

    171. 171. Penney K.L., Schumacher F.R., Kraft P., et al: Association of KLK3 (PSA) genetic variants with prostate cancer risk and PSA levels. Carcinogenesis 2011; 32: pp. 853-859

    172. 172. Eeles R.A., Kote-Jarai Z., Giles G.G., et al: Multiple newly identified loci associated with prostate cancer susceptibility. Nat Genet 2008; 40: pp. 316-321

    173. 173. Lindstrom S., Schumacher F., Siddiq A., et al: Characterizing associations and SNP-environment interactions for GWAS-identified prostate cancer risk markers—results from BPC3. PLoS One 2011; 6: pp. e17142

    174. 174. Stott-Miller M., Karyadi D.M., Smith T., et al: HOXB13 mutations in a population-based, case-control study of prostate cancer. Prostate 2013; 73: pp. 634-641

    175. 175. Xu J., Lange E.M., Lu L., et al: HOXB13 is a susceptibility gene for prostate cancer: results from the International Consortium for Prostate Cancer Genetics (ICPCG). Hum Genet 2013; 132: pp. 5-14

    176. 176. Cooperberg M.R., Simko J.P., Cowan J.E., et al: Validation of a cell-cycle progression gene panel to improve risk stratification in a contemporary prostatectomy cohort. J Clin Oncol 2013; 31: pp. 1428-1434

    177. 177. Cooperberg MR, Simko JP, Falzarano S, et al. Development and validation of the biopsy-based genomic prostate score (GPS) as a predictor of high grade or extracapsular prostate cancer to improve patient selection for active surveillance. AUA 2013 Annual Meeting 2013 (Abstract #2131). San Diego, May 8, 2013.

    178. 178. Hindorff L.A., Gillanders E.M., and Manolio T.A.: Genetic architecture of cancer and other complex diseases: lessons learned and future directions. Carcinogenesis 2011; 32: pp. 945-954

    179. 179. Berger M.F., Lawrence M.S., Demichelis F., et al: The genomic complexity of primary human prostate cancer. Nature 2011; 470: pp. 214-220

    180. 180. Lindberg J., Klevebring D., Liu W., et al: Exome sequencing of prostate cancer supports the hypothesis of independent tumour origins. Eur Urol 2013; 63: pp. 347-353

    181. 181. El Melegy N.T., Aboulella H.A., Abul-Fadl A.M., et al: Potential biomarkers for differentiation of benign prostatic hyperplasia and prostate cancer. Br J Biomed Sci 2010; 67: pp. 109-112

    182. 182. Potter S.R., Reckwitz T., and Partin A.W.: The use of percent free PSA for early detection of prostate cancer. J Androl 1999; 20: pp. 449-453

    183. 183. Catalona W.J., Partin A.W., Slawin K.M., et al: Percentage of free PSA in black versus white men for detection and staging of prostate cancer: a prospective multicenter clinical trial. Urology 2000; 55: pp. 372-376

    184. 184. Mikolajczyk S.D., Catalona W.J., Evans C.L., et al: Proenzyme forms of prostate-specific antigen in serum improve the detection of prostate cancer. Clin Chem 2004; 50: pp. 1017-1025

    185. 185. Sokoll L.J., Chan D.W., Mikolajczyk S.D., et al: Proenzyme PSA for the early detection of prostate cancer in the 2.5-4.0 ng/ml total PSA range: preliminary analysis. Urology 2003; 61: pp. 274-276

    186. 186. Perdona S., Bruzzese D., Ferro M., et al: Prostate health index (PHI) and prostate cancer antigen 3 (PCA3) significantly improve diagnostic accuracy in patients undergoing prostate biopsy. Prostate 2013; 73: pp. 227-235

    187. 187. Houlgatte A., Vincendeau S., Desfemmes F., et al: Use of [-2] pro PSA and PHI index for early detection of prostate cancer: a prospective of 452 patients. Prog Urol 2012; 22: pp. 279-283

    188. 188. Nichol M.B., Wu J., Huang J., et al: Cost-effectiveness of Prostate Health Index for prostate cancer detection. BJU Int 2012; 110: pp. 353-362

    189. 189. Jansen F.H., van Schaik R.H., Kurstjens J., et al: Prostate-specific antigen (PSA) isoform p2PSA in combination with total PSA and free PSA improves diagnostic accuracy in prostate cancer detection. Eur Urol 2010; 57: pp. 921-927

    190. 190. Lazzeri M., Haese A., Abrate A., et al: Clinical performance of serum prostate-specific antigen isoform [-2]proPSA (p2PSA) and its derivatives, %p2PSA and the prostate health index (PHI), in men with a family history of prostate cancer: results from a multicentre European study, the PROMEtheuS project. BJU Int 2013; 112: pp. 313-321

    191. 191. Stephan C., Vincendeau S., Houlgatte A., et al: Multicenter evaluation of [-2]proprostate-specific antigen and the prostate health index for detecting prostate cancer. Clin Chem 2013; 59: pp. 306-314

    192. 192. Loeb S., Sokoll L.J., Broyles D.L., et al: Prospective multicenter evaluation of the Beckman Coulter Prostate Health Index using WHO calibration. J Urol 2013; 189: pp. 1702-1706

    193. 193. Hessels D., Klein Gunnewiek J.M., van Oort I., et al: DD3(PCA3)-based molecular urine analysis for the diagnosis of prostate cancer. Eur Urol 2003; 44: pp. 8-15

    194. 194. de Kok J.B., Verhaegh G.W., Roelofs R.W., et al: DD3(PCA3), a very sensitive and specific marker to detect prostate tumors. Cancer Res 2002; 62: pp. 2695-2698

    195. 195. Deras I.L., Aubin S.M., Blase A., et al: PCA3: a molecular urine assay for predicting prostate biopsy outcome. J Urol 2008; 179: pp. 1587-1592

    196. 196. Nakanishi H., Groskopf J., Fritsche H.A., et al: PCA3 molecular urine assay correlates with prostate cancer tumor volume: implication in selecting candidates for active surveillance. J Urol 2008; 179: pp. 1804-1809

    197. 197. Lin D.W., Newcomb L.F., Brown E.C., et al: Urinary TMPRSS2:ERG and PCA3 in an active surveillance cohort: results from a baseline analysis in the Canary Prostate Active Surveillance Study. Clin Cancer Res 2013; 19: pp. 2442-2450

    198. 198. Whitman E.J., Groskopf J., Ali A., et al: PCA3 score before radical prostatectomy predicts extracapsular extension and tumor volume. J Urol 2008; 180: pp. 1975-1978

    199. 199. Stephan C., Jung K., Semjonow A., et al: Comparative assessment of urinary prostate cancer antigen 3 and TMPRSS2:ERG gene fusion with the serum [-2]proprostate-specific antigen-based prostate health index for detection of prostate cancer. Clin Chem 2013; 59: pp. 280-288

    200. 200. Liu W., Xie C.C., Zhu Y., et al: Homozygous deletions and recurrent amplifications implicate new genes involved in prostate cancer. Neoplasia 2008; 10: pp. 897-907

    201. 201. Sun J., Liu W., Adams T.S., et al: DNA copy number alterations in prostate cancers: a combined analysis of published CGH studies. Prostate 2007; 67: pp. 692-700

    202. 202. Taylor B.S., Schultz N., Hieronymus H., et al: Integrative genomic profiling of human prostate cancer. Cancer Cell 2010; 18: pp. 11-22

    203. 203. Nickerson M.L., Im K.M., Misner K.J., et al: Somatic alterations contributing to metastasis of a castration-resistant prostate cancer. Hum Mutat 2013; 34: pp. 1231-1241

    204. 204. Liu W., Xie C.C., Thomas C.Y., et al: Genetic markers associated with early cancer-specific mortality following prostatectomy. Cancer 2013; 119: pp. 2405-2412

    205. 205. Dean M., and Lou H.: Genetics and genomics of prostate cancer. Asian J Androl 2013; 15: pp. 309-313

    206. 206. Zafarana G., Ishkanian A.S., Malloff C.A., et al: Copy number alterations of c-MYC and PTEN are prognostic factors for relapse after prostate cancer radiotherapy. Cancer 2012; 118: pp. 4053-4062

    207. 207. Cheng I., Levin A.M., Tai Y.C., et al: Copy number alterations in prostate tumors and disease aggressiveness. Genes Chromosomes Cancer 2012; 51: pp. 66-76

    208. 208. Kumar-Sinha C., Tomlins S.A., and Chinnaiyan A.M.: Recurrent gene fusions in prostate cancer. Nat Rev Cancer 2008; 8: pp. 497-511

    209. 209. Tomlins S.A., Rhodes D.R., Perner S., et al: Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science 2005; 310: pp. 644-648

    210. 210. Palanisamy N., Ateeq B., Kalyana-Sundaram S., et al: Rearrangements of the RAF kinase pathway in prostate cancer, gastric cancer and melanoma. Nat Med 2010; 16: pp. 793-798

    211. 211. Kollermann J., Albrecht H., Schlomm T., et al: Activating BRAF gene mutations are uncommon in hormone refractory prostate cancer in Caucasian patients. Oncol Lett 2010; 1: pp. 729-732

    212. 212. Tomlins S.A., Bjartell A., Chinnaiyan A.M., et al: ETS gene fusions in prostate cancer: from discovery to daily clinical practice. Eur Urol 2009; 56: pp. 275-286

    213. 213. Tomlins S.A., Aubin S.M., Siddiqui J., et al: Urine TMPRSS2:ERG fusion transcript stratifies prostate cancer risk in men with elevated serum PSA. Sci Transl Med 2011; 3: pp. 94ra72

    214. 214. Barbieri C.E., Baca S.C., Lawrence M.S., et al: Exome sequencing identifies recurrent SPOP, FOXA1 and MED12 mutations in prostate cancer. Nat Genet 2012; 44: pp. 685-689

    215. 215. Grasso C.S., Wu Y.M., Robinson D.R., et al: The mutational landscape of lethal castration-resistant prostate cancer. Nature 2012; 487: pp. 239-243

    216. 216. Eeles R.A., Kote-Jarai Z., Al Olama A.A., et al: Identification of seven new prostate cancer susceptibility loci through a genome-wide association study. Nat Genet 2009; 41: pp. 1116-1121

    217. 217. Gudmundsson J., Sulem P., Manolescu A., et al: Genome-wide association study identifies a second prostate cancer susceptibility variant at 8q24. Nat Genet 2007; 39: pp. 631-637

    218. 218. Gudmundsson J., Sulem P., Steinthorsdottir V., et al: Two variants on chromosome 17 confer prostate cancer risk, and the one in TCF2 protects against type 2 diabetes. Nat Genet 2007; 39: pp. 977-983

    219. 219. Kote-Jarai Z., Olama A.A., Giles G.G., et al: Seven prostate cancer susceptibility loci identified by a multi-stage genome-wide association study. Nat Genet 2011; 43: pp. 785-791

    220. 220. Schumacher F.R., Berndt S.I., Siddiq A., et al: Genome-wide association study identifies new prostate cancer susceptibility loci. Hum Mol Genet 2011; 20: pp. 3867-3875

    221. 221. Thomas G., Jacobs K.B., Yeager M., et al: Multiple loci identified in a genome-wide association study of prostate cancer. Nat Genet 2008; 40: pp. 310-315

    222. 222. Cuzick J., Swanson G.P., Fisher G., et al: Prognostic value of an RNA expression signature derived from cell cycle proliferation genes in patients with prostate cancer: a retrospective study. Lancet Oncol 2011; 12: pp. 245-255

    223. 223. Cuzick J., Berney D.M., Fisher G., et al: Prognostic value of a cell cycle progression signature for prostate cancer death in a conservatively managed needle biopsy cohort. Br J Cancer 2012; 106: pp. 1095-1099

    224. 224. Bussemakers M.J., van Bokhoven A., Verhaegh G.W., et al: DD3: a new prostate-specific gene, highly overexpressed in prostate cancer. Cancer Res 1999; 59: pp. 5975-5979

    225. 225. de la Taille A.: Progensa PCA3 test for prostate cancer detection. Expert Rev Mol Diagn 2007; 7: pp. 491-497

    226. 226. Kirby R.: PCA3 improves diagnosis of prostate cancer. Practitioner 2007; 251: pp. 18

    227. 227. Stewart G.D., Van Neste L., Delvenne P., et al: Clinical utility of an epigenetic assay to detect occult prostate cancer in histopathologically negative biopsies: results of the MATLOC study. J Urol 2013; 189: pp. 1110-1116

    228. 228. Trock B.J., Brotzman M.J., Mangold L.A., et al: Evaluation of GSTP1 and APC methylation as indicators for repeat biopsy in a high-risk cohort of men with negative initial prostate biopsies. BJU Int 2012; 110: pp. 56-62

    229. 229. Robinson K., Creed J., Reguly B., et al: Accurate prediction of repeat prostate biopsy outcomes by a mitochondrial DNA deletion assay. Prostate Cancer Prostatic Dis 2010; 13: pp. 126-131

    230. 230. Badani K., Thompson D.J., Buerki C., et al: Impact of a genomic classifier of metastatic risk on postoperative treatment recommendations for prostate cancer patients: a report from the DECIDE study group. Oncotarget 2013; 4: pp. 600-609

    Only gold members can continue reading. Log In or Register to continue

    Stay updated, free articles. Join our Telegram channel

    Mar 3, 2017 | Posted by in UROLOGY | Comments Off on The Epidemiology and Clinical Implications of Genetic Variation in Prostate Cancer

    Full access? Get Clinical Tree

    Get Clinical Tree app for offline access