Worldwide prevalence of antimicrobial resistance is rapidly increasing, primarily a result of antibiotic misuse in the medical community. Resistant infections involving the urinary tract are typically caused by gram-negative bacteria. When treating these infections, clinicians have few effective antimicrobials to choose from and many are associated with significant adverse effects. There are now situations when clinicians are tasked with managing infections from pan-resistant organisms; thus, it is of paramount importance that spread of resistance be controlled. This review discusses common gram-negative resistance classes, highlighting the mechanisms of resistance, risk factors, type of infections, treatment, and outcomes associated with each class.
Infection control and prevention programs are tasked with decreasing person-to-person transmission of resistant organisms, overall HAI rates, and control of outbreaks. Some commonly used techniques to accomplish these goals are shown in Box 3 .
- •
Strict adherence to hand hygiene
- •
Contact precautions for patients colonized or infected with resistant bacteria
- •
Patient cohorting
- •
Chlorhexidine bathing
- •
Surveillance cultures for high-risk units or patients
- •
Environmental cleaning guidelines
- •
Early discontinuation of unnecessary equipment (ie, central venous catheter, bladder catheters, endotracheal intubation, etc.)
- •
Appropriate precautions used when performing medical procedures
- •
Appropriate cleaning of medical instruments (ie, bronchoscopes, endoscopes, etc.)
References
- 1. Laxminarayan R., Duse A., Wattal C., et al: Antibiotic resistance-the need for global solutions. Lancet Infect Dis 2013; 13: pp. 1057-1098
- 2. Available at: http://www.cdc.gov/drugresistance/index.html. Accessed April 1, 2015.
- 3. Paterson D.L., and Bonomo R.A.: Extended-spectrum beta-lactamases: a clinical update. Clin Microbiol Rev 2005; 18: pp. 657-686
- 4. Pitout J.D., and Laupland K.B.: Extended-spectrum beta-lactamase-producing Enterobacteriaceae: an emerging public-health concern. Lancet Infect Dis 2008; 8: pp. 159-166
- 5. Knothe H., Shah P., Krcmery V., et al: Transferable resistance to cefotaxime, cefoxitin, cefamandole and cefuroxime in clinical isolates of Klebsiella pneumoniae and Serratia marcescens. Infection 1983; 11: pp. 315-317
- 6. Jacoby G.A., Medeiros A.A., O’Brien T.F., et al: Broad-spectrum, transmissible beta-lactamases. N Engl J Med 1988; 319: pp. 723-724
- 7. Jacoby G.A., and Munoz-Price L.S.: The new beta-lactamases. N Engl J Med 2005; 352: pp. 380-391
- 8. Wu G., Day M.J., Mafura M.T., et al: Comparative analysis of ESBL-positive Escherichia coli isolates from animals and humans from the UK, the Netherlands and Germany. PLoS One 2013; 8: pp. e75392
- 9. Vincent C., Boerlin P., Daignault D., et al: Food reservoir for Escherichia coli causing urinary tract infections. Emerg Infect Dis 2010; 16: pp. 88-95
- 10. De Boeck H., Miwanda B., Lunguya-Metila O., et al: ESBL-positive Enterobacteria isolates in drinking water. Emerg Infect Dis 2012; 18: pp. 1019-1020
- 11. Dhanji H., Murphy N.M., Akhigbe C., et al: Isolation of fluoroquinolone-resistant O25b:H4-ST131 Escherichia coli with CTX-M-14 extended-spectrum beta-lactamase from UK river water. J Antimicrob Chemother 2011; 66: pp. 512-516
- 12. Johnson J.R., Miller S., Johnston B., et al: Sharing of Escherichia coli sequence type ST131 and other multidrug-resistant and Urovirulent E. coli strains among dogs and cats within a household. J Clin Microbiol 2009; 47: pp. 3721-3725
- 13. Winokur P.L., Canton R., Casellas J.M., et al: Variations in the prevalence of strains expressing an extended-spectrum beta-lactamase phenotype and characterization of isolates from Europe, the Americas, and the Western Pacific region. Clin Infect Dis 2001; 32: pp. S94-S103
- 14. Ben-Ami R., Rodríguez-Baño J., Arslan H., et al: A multinational survey of risk factors for infection with extended-spectrum beta-lactamase-producing enterobacteriaceae in nonhospitalized patients. Clin Infect Dis 2009; 49: pp. 682-690
- 15. Chopra T., Marchaim D., Veltman J., et al: Impact of cefepime therapy on mortality among patients with bloodstream infections caused by extended-spectrum-beta-lactamase-producing Klebsiella pneumoniae and Escherichia coli. Antimicrob Agents Chemother 2012; 56: pp. 3936-3942
- 16. Zanetti G., Bally F., Greub G., et al: Cefepime versus imipenem-cilastatin for treatment of nosocomial pneumonia in intensive care unit patients: a multicenter, evaluator-blind, prospective, randomized study. Antimicrob Agents Chemother 2003; 47: pp. 3442-3447
- 17. Gavin P.J., Suseno M.T., Thomson R.B., et al: Clinical correlation of the CLSI susceptibility breakpoint for piperacillin- tazobactam against extended-spectrum-beta-lactamase-producing Escherichia coli and Klebsiella species. Antimicrob Agents Chemother 2006; 50: pp. 2244-2247
- 18. Rupp M.E., and Fey P.D.: Extended spectrum beta-lactamase (ESBL)-producing Enterobacteriaceae: considerations for diagnosis, prevention and drug treatment. Drugs 2003; 63: pp. 353-365
- 19. Tasbakan M.I., Pullukcu H., Sipahi O.R., et al: Nitrofurantoin in the treatment of extended-spectrum beta-lactamase-producing Escherichia coli-related lower urinary tract infection. Int J Antimicrob Agents 2012; 40: pp. 554-556
- 20. Falagas M.E., Kastoris A.C., Kapaskelis A.M., et al: Fosfomycin for the treatment of multidrug-resistant, including extended-spectrum beta-lactamase producing, Enterobacteriaceae infections: a systematic review. Lancet Infect Dis 2010; 10: pp. 43-50
- 21. Rottier W.C., Ammerlaan H.S., Bonten M.J., et al: Effects of confounders and intermediates on the association of bacteraemia caused by extended-spectrum beta-lactamase-producing Enterobacteriaceae and patient outcome: a meta-analysis. J Antimicrob Chemother 2012; 67: pp. 1311-1320
- 22. Paterson D.L., and Doi Y.: A step closer to extreme drug resistance (XDR) in gram-negative bacilli. Clin Infect Dis 2007; 45: pp. 1179-1181
- 23. Bratu S., Tolaney P., Karumudi U., et al: Carbapenemase-producing Klebsiella pneumoniae in Brooklyn, NY: molecular epidemiology and in vitro activity of polymyxin B and other agents. J Antimicrob Chemother 2005; 56: pp. 128-132
- 24. Queenan A.M., and Bush K.: Carbapenemases: the versatile beta-lactamases. Clin Microbiol Rev 2007; 20: pp. 440-458
- 25. Sidjabat H., Nimmo G.R., Walsh T.R., et al: Carbapenem resistance in Klebsiella pneumoniae due to the New Delhi Metallo-beta-lactamase. Clin Infect Dis 2011; 52: pp. 481-484
- 26. Johnson A.P., and Woodford N.: Global spread of antibiotic resistance: the example of New Delhi metallo-beta-lactamase (NDM)-mediated carbapenem resistance. J Med Microbiol 2013; 62: pp. 499-513
- 27. Yigit H., Queenan A.M., Anderson G.J., et al: Novel carbapenem-hydrolyzing beta-lactamase, KPC-1, from a carbapenem-resistant strain of Klebsiella pneumoniae. Antimicrob Agents Chemother 2001; 45: pp. 1151-1161
- 28. Kuehn B.M.: “Nightmare” bacteria on the rise in US hospitals, long-term care facilities. JAMA 2013; 309: pp. 1573-1574
- 29. Sievert D.M., Ricks P., Edwards J.R., et al: Antimicrobial-resistant pathogens associated with healthcare-associated infections: summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2009-2010. Infect Control Hosp Epidemiol 2013; 34: pp. 1-14
- 30. Nordmann P., Naas T., Poirel L., et al: Global spread of carbapenemase-producing enterobacteriaceae. Emerg Infect Dis 2011; 17: pp. 1791-1798
- 31. Schwaber M.J., Klarfeld-Lidji S., Navon-Venezia S., et al: Predictors of carbapenem-resistant Klebsiella pneumoniae acquisition among hospitalized adults and effect of acquisition on mortality. Antimicrob Agents Chemother 2008; 52: pp. 1028-1033
- 32. Patel G., Huprikar S., Factor S.H., et al: Outcomes of carbapenem-resistant Klebsiella pneumoniae infection and the impact of antimicrobial and adjunctive therapies. Infect Control Hosp Epidemiol 2008; 29: pp. 1099-1106
- 33. Centers for Disease Control and Prevention (CDC) : Vital signs: carbapenem-resistant Enterobacteriaceae. MMWR Morb Mortal Wkly Rep 2013; 62: pp. 165-170
- 34. Won S.Y., Munoz-Price L.S., Lolans K., et al: Emergence and rapid regional spread of Klebsiella pneumoniae carbapenemase-producing Enterobacteriaceae. Clin Infect Dis 2011; 53: pp. 532-540
- 35. Snitkin E.S., Zelazny A.M., Thomas P.J., et al: Tracking a hospital outbreak of carbapenem-resistant Klebsiella pneumoniae with whole-genome sequencing. Sci Transl Med 2012; 4: pp. 148ra116
- 36. Alexander B.T., Marschall J., Tibbetts R.J., et al: Treatment and clinical outcomes of urinary tract infections caused by KPC-producing Enterobacteriaceae in a retrospective cohort. Clin Ther 2012; 34: pp. 1314-1323
- 37. Tumbarello M., Viale P., Viscoli C., et al: Predictors of mortality in bloodstream infections caused by Klebsiella pneumoniae carbapenemase-producing K. pneumoniae: importance of combination therapy. Clin Infect Dis 2012; 55: pp. 943-950
- 38. Ben-David D., Kordevani R., Keller N., et al: Outcome of carbapenem resistant Klebsiella pneumoniae bloodstream infections. Clin Microbiol Infect 2012; 18: pp. 54-60
- 39. Pogue J.M., Lee J., Marchaim D., et al: Incidence of and risk factors for colistin-associated nephrotoxicity in a large academic health system. Clin Infect Dis 2011; 53: pp. 879-884
- 40. Moore R.D., Smith C.R., Lipsky J.J., et al: Risk factors for nephrotoxicity in patients treated with aminoglycosides. Ann Intern Med 1984; 100: pp. 352-357
- 41. Molton J.S., Tambyah P.A., Ang B.S., et al: The global spread of healthcare-associated multidrug-resistant bacteria: a perspective from Asia. Clin Infect Dis 2013; 56: pp. 1310-1318
- 42. Epstein L., Hunter J.C., Arwady M.A., et al: New Delhi metallo-beta-lactamase-producing carbapenem-resistant Escherichia coli associated with exposure to duodenoscopes. JAMA 2014; 312: pp. 1447-1455
- 43. Karageorgopoulos D.E., and Falagas M.E.: Current control and treatment of multidrug-resistant Acinetobacter baumannii infections. Lancet Infect Dis 2008; 8: pp. 751-762
- 44. Dijkshoorn L., Nemec A., Seifert H., et al: An increasing threat in hospitals: multidrug-resistant Acinetobacter baumannii. Nat Rev Microbiol 2007; 5: pp. 939-951
- 45. Bonomo R.A., and Szabo D.: Mechanisms of multidrug resistance in Acinetobacter species and Pseudomonas aeruginosa. Clin Infect Dis 2006; 43: pp. S49-S56
- 46. Seifert H., Dijkshoorn L., Gerner-Smidt P., et al: Distribution of Acinetobacter species on human skin: comparison of phenotypic and genotypic identification methods. J Clin Microbiol 1997; 35: pp. 2819-2825
- 47. Chu Y.W., Leung C.M., Houang E.T., et al: Skin carriage of acinetobacters in Hong Kong. J Clin Microbiol 1999; 37: pp. 2962-2967
- 48. Falagas M.E., Karveli E.A., Kelesidis I., et al: Community-acquired Acinetobacter infections. Eur J Clin Microbiol Infect Dis 2007; 26: pp. 857-868
- 49. Playford E.G., Craig J.C., Iredell J.R., et al: Carbapenem-resistant Acinetobacter baumannii in intensive care unit patients: risk factors for acquisition, infection and their consequences. J Hosp Infect 2007; 65: pp. 204-211
- 50. Fournier P.E., and Richet H.: The epidemiology and control of Acinetobacter baumannii in health care facilities. Clin Infect Dis 2006; 42: pp. 692-699
- 51. Scott P., Deye G., Srinivasan A., et al: An outbreak of multidrug-resistant Acinetobacter baumannii-calcoaceticus complex infection in the US military health care system associated with military operations in Iraq. Clin Infect Dis 2007; 44: pp. 1577-1584
- 52. Reinert R.R., Low D.E., Rossi F., et al: Antimicrobial susceptibility among organisms from the Asia/Pacific Rim, Europe and Latin and North America collected as part of TEST and the in vitro activity of tigecycline. J Antimicrob Chemother 2007; 60: pp. 1018-1029
- 53. Zalts R., Neuberger A., Hussein K., et al: Treatment of carbapenem-resistant acinetobacter baumannii ventilator-associated pneumonia: retrospective comparison between intravenous colistin and intravenous ampicillin-sulbactam. Am J Ther 2013; undefined:
- 54. Munoz-Price L.S., Zembower T., Penugonda S., et al: Clinical outcomes of carbapenem-resistant Acinetobacter baumannii bloodstream infections: study of a 2-state monoclonal outbreak. Infect Control Hosp Epidemiol 2010; 31: pp. 1057-1062
- 55. Wisplinghoff H., Bischoff T., Tallent S.M., et al: Nosocomial bloodstream infections in US hospitals: analysis of 24,179 cases from a prospective nationwide surveillance study. Clin Infect Dis 2004; 39: pp. 309-317
- 56. Falagas M.E., Bliziotis I.A., Siempos , et al: Attributable mortality of Acinetobacter baumannii infections in critically ill patients: a systematic review of matched cohort and case-control studies. Crit Care 2006; 10: pp. R48
- 57. Blot S., Vandewoude K., Colardyn F., et al: Nosocomial bacteremia involving Acinetobacter baumannii in critically ill patients: a matched cohort study. Intensive Care Med 2003; 29: pp. 471-475
- 58. Lister P.D., Wolter D.J., Hanson N.D., et al: Antibacterial-resistant Pseudomonas aeruginosa: clinical impact and complex regulation of chromosomally encoded resistance mechanisms. Clin Microbiol Rev 2009; 22: pp. 582-610
- 59. Magiorakos A.P., Srinivasan A., Carey R.B., et al: Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect 2012; 18: pp. 268-281
- 60. Morrison A.J., and Wenzel R.P.: Epidemiology of infections due to Pseudomonas aeruginosa. Rev Infect Dis 1984; 6: pp. S627-S642
- 61. Nakamura A., Miyake K., Misawa S., et al: Meropenem as predictive risk factor for isolation of multidrug-resistant Pseudomonas aeruginosa. J Hosp Infect 2013; 83: pp. 153-155
- 62. Aloush V., Navon-Venezia S., Seigman-Igra Y., et al: Multidrug-resistant Pseudomonas aeruginosa: risk factors and clinical impact. Antimicrob Agents Chemother 2006; 50: pp. 43-48
- 63. Bukholm G., Tannaes T., Kjelsberg A.B., et al: An outbreak of multidrug-resistant Pseudomonas aeruginosa associated with increased risk of patient death in an intensive care unit. Infect Control Hosp Epidemiol 2002; 23: pp. 441-446
- 64. Kerr K.G., and Snelling A.M.: Pseudomonas aeruginosa: a formidable and ever-present adversary. J Hosp Infect 2009; 73: pp. 338-344
- 65. Tam V.H., Rogers C.A., Chang K.T., et al: Impact of multidrug-resistant Pseudomonas aeruginosa bacteremia on patient outcomes. Antimicrob Agents Chemother 2010; 54: pp. 3717-3722
- 66. Available at: http://www.cdc.gov/drugresistance/pdf/ar-threats-2013-508.pdf. Accessed April 1, 2015.
- 67. Dortch M.J., Fleming S.B., Kauffmann R.M., et al: Infection reduction strategies including antibiotic stewardship protocols in surgical and trauma intensive care units are associated with reduced resistant gram-negative healthcare-associated infections. Surg Infect (Larchmt) 2011; 12: pp. 15-25

Stay updated, free articles. Join our Telegram channel

Full access? Get Clinical Tree

